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DATA LOCATION OBFUSCATION

BACKGROUND

Software running on an untrusted host is inherently vul-
nerable to inspection and modification. Recent advances on
the theoretical level have shown both negative and positive
results on the possibility of protecting software within this
severe threat model. However, little is known about the type
of application one usually wants to protect.

Intuitively, any protection scheme other than a physical one
depends on the operation of a finite state machine. Ultimately,
given physical access, any finite state machine can be exam-
ined and modified at will given enough time and effort. How-
ever, increasing deployment of software can be observed on
open architectures in scenarios where the software contains
secret information or where integrity of the software is
required by a business model. For example, access to copy-
righted music and video is increasingly controlled by soft-
ware-based digital containers. Further, the experience of
multi-player games relies heavily on users not being able to
gain competitive advantages through cheating. Software
licenses also may be enforced through technical protection
mechanisms embedded in the software, and as a final example
ad-supported software relies on the ads being correctly dis-
played and reported.

The above examples illustrate current demand for practical
defense mechanisms. Even if theoretically secure protection
is impossible, the question is more whether the time and effort
required to attack software can be increased to make the costs
outweigh the benefits. Consider a simple “Hello World” pro-
gram for example. Assume one desires to protect this against
modification of the “Hello World” message. Without coun-
termeasures, an attacker could easily replace the characters
“World” with “Alice,” for instance, in the binary using tools
such as string and hex editors. However, even a limited
amount of obfuscation would foil this straightforward attack
and make it more economically viable for Alice to write her
own “Hello Alice” program from scratch rather than modify-
ing the existing “Hello World” program. From an economical
point of view, the binary would then be sufficiently protected
against this type of attack.

Practical obfuscation techniques are thus about raising the
bar to a level that supersedes the incentive of the attacker. This
incentive is composed of many factors such as perceived
consequences, facilitating conditions, and habits.

SUMMARY

The following presents a simplified summary in order to
provide a basic understanding of some aspects of the dis-
closed subject matter. This summary is not an extensive over-
view. It is not intended to identify key/critical elements or to
delineate the scope of the claimed subject matter. Its sole
purpose is to present some concepts in a simplified form as a
prelude to the more detailed description that is presented later.

Briefly described, the subject disclosure pertains to data
location obfuscation. Various practical techniques are pro-
vided for hiding data flow patterns to complicate attacks
based on data flow analysis and/or memory traces. According
to a disclosed aspect, protection can be afforded by periodi-
cally reordering or shuftling data in memory while preserving
original program functionality. Salted encryption can also be
utilized in combination with periodic reordering to protect
data further. Additionally, pointer references can be
scrambled to blur or obfuscate relations between different
pointers.
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In accordance with an aspect of the disclosure, techniques
for data flow pattern hiding can be embodied within a secure
memory management component. Programs can then be
transformed into data location obfuscated programs by redi-
recting memory requests and accesses, among other things, to
the secure memory management unit, which mediates pro-
gram access to memory.

To the accomplishment of the foregoing and related ends,
certain illustrative aspects of the claimed subject matter are
described herein in connection with the following description
and the annexed drawings. These aspects are indicative of
various ways in which the subject matter may be practiced, all
of which are intended to be within the scope of the claimed
subject matter. Other advantages and novel features may
become apparent from the following detailed description
when considered in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a data location obfuscation
system in accordance with an aspect of the disclosure.

FIG. 2 is a block diagram of a representative secure
memory management component according to a disclosed
aspect.

FIG. 3 is a block diagram of a representative request pro-
cessor component according to an aspect of the disclosure.

FIG. 4 is a block diagram of a representative request pro-
cessor component that processes pointers in accordance with
an aspect of the disclosure.

FIG. 5 is a block diagram of a program transformation
system according to an aspect of the disclosure.

FIG. 6 is a block diagram of a data location obfuscation
system utilized in the context of a heap in accordance with a
disclosed aspect.

FIG. 7 is a flow chart diagram of a method of securing
programs in accordance with an aspect of the disclosure.

FIG. 8 is a flow chart diagram of a method of secure
processing in accordance with a disclosed aspect.

FIG. 9 is a flow chart diagram of a method of obfuscating
data locations in accordance with an aspect of the disclosure.

FIG. 10 is a flow chart diagram of a method of processing
pointers according to a disclosed aspect.

FIG. 11 is a flow chart diagram of a method of program
transformation in accordance with an aspect of the disclosure.

FIG. 12 is a flow chart diagram of a method of performance
optimization according to a disclosed aspect.

FIG. 13 is a schematic block diagram illustrating a suitable
operating environment for aspects of the subject disclosure.

FIG. 14 is a schematic block diagram of a sample-comput-
ing environment.

DETAILED DESCRIPTION

Systems and methods pertaining to data location obfusca-
tion are described in detail hereinafter. Program memory
operations are directed through a secure memory manage-
ment component (SMMC). As the SMMC mediates access to
memory, such as a heap, it can periodically reorder data in
memory thereby making it harder for an attacker to track data
flow during program execution. To further add complexity
and deter tampering, data can be encrypted and periodically
re-encrypted differently. Additionally, pointers returned to
the program can be scrambled to further prevent analysis and
revelation of information based on location.

Various aspects of the subject disclosure are now described
with reference to the annexed drawings, wherein like numer-
als refer to like or corresponding elements throughout. It



US 9,117,094 B2

3

should be understood, however, that the drawings and
detailed description relating thereto are not intended to limit
the claimed subject matter to the particular form disclosed.
Rather, the intention is to cover all modifications, equivalents,
and alternatives falling within the spirit and scope of the
claimed subject matter.

Referring initially to FIG. 1, a data location obfuscation
system 100 is illustrated in accordance with an aspect of the
claimed subject matter. The system 100 includes a program
component 110, memory component 120, and secure
memory management component (SMMC) 130. The pro-
gram component 110 refers to a computer program compris-
ing instructions or code that embodies functionality per-
formed upon execution, thereby transforming a general
computer into a specialized machine. The program compo-
nent 110 employs main storage or memory 120 to facilitate
expeditious execution. For example, the memory component
120 can include a code segment, stack segment and heap
segment to aid execution by capturing code, temporary data
for local functions, and information that remains in existence
for the duration of program execution, respectively.

The SMMC 130 acts as an intermediate between the pro-
gram component 110 and memory component 120. More-
over, the SMMC 130 can reorder data periodically with
respect to memory component 120 while maintaining origi-
nal functionality of program component 110, thereby obfus-
cating data location and complicating attacks based on data
flow analysis and/or memory traces. In other words, the
SMMC 130 can mediate accesses of memory component 120
by program component 110 and make the reordering as trans-
parent as possible to the program component 110.

A dataflow graph of a program or a way to describe access
patterns of a program can be sought by a hacker or other
malicious entity to access sensitive information or aid tam-
pering, among other things. The system 100 adds security to
memory management via SMMC 130. By periodically reor-
dering data in memory in an automated manner, the data flow
graph can essentially be flattened. This means that a hacker is
unable or at least not easily able to discern patterns in the data
flow.

As the term component indicates, the secure memory man-
agement component 130 can be embodied as hardware soft-
ware or a combination thereof. Despite the promise of wide-
spread distribution of trusted platform modules (TPM), many
scenarios may not be able to rely on trusted hardware for
years to come. These scenarios may require correct operation
of software on legacy systems or on systems whose owners
are reluctant to enable such modules because of fears of
privacy breaches and user lock-in. Accordingly, employing
software results in a practical compromise among cost, secu-
rity, and viability. Furthermore, this allows for parameteriza-
tion of extent and frequency of reordering. However, imple-
mentation is by no means limited to software. In fact, a more
optimized solution could be available with a dedicated
SMMC 130 implemented in hardware or a combination of
software and hardware memory management.

FIG. 2 illustrates a representative SMMC 130 in accor-
dance with an aspect of the claimed subject matter. The
SMMC 130 includes an interface component 210 that facili-
tates interaction between a program and the SMMC 130. In
accordance with one aspect, the interface component 210 can
correspond to an application-programming interface (API)
wherein the program calls particular SMMC functions, meth-
ods or the like. As an alternative, the interface component 210
can capture particular memory access operations and map
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them to SMMC 130 operations. Regardless, interface com-
ponent 210 communicates program operations to request pro-
cessor component 220.

The request processor component 220 processes or medi-
ates memory interactions from program. The interactions can
include memory requests (e.g., malloc, calloc, realloc,
free...)and data accesses (e.g., read, write . . . ), among other
things. In accordance with one aspect of the claimed subject
matter, the data need not be in the location expected or refer-
enced by the program. Consequently, the request processor
component 220 can utilize map component 230 to identify
specific data locations where necessary. The map component
230 provides a map or transformation of program specified
locations and actual memory locations. Further, the request
processor component 220 can employ the encryption/decryp-
tion component(s) 240 to encrypt or decrypt data. For
example, specific data or units of storage, such as pages, can
be encrypted and as such require decryption to return data.
Similarly, data or units of storage may require encryption
upon writing data to memory.

Reorder component 250 reorders data in memory or a
portion thereof automatically. The degree and extent of reor-
der can be controlled via parameters, among other things. In
one instance, reordering can be performed after the occur-
rence of a predetermined number of memory requests/ac-
cesses. Of course, reordering can also be performed periodi-
cally or after various periods of time regardless of the
occurrence of a memory event. Upon permuting location,
changes can be noted by the reorder component 250 in the
map component 230. Furthermore, the reorder component
250 may need to utilize the encryption/decryption component
240 to decrypt and re-encrypt data or units thereof. In fact,
re-encryption can occur with a different salt and/or encryp-
tion method in accordance with an aspect of the claims to
provide further data protection. Reordering can even be a
trigger for re-encryption of portions affected or unaffected by
the reordering.

Turning attention to FIG. 3, a representative request pro-
cessor component 220 is illustrated in accordance with an
aspect of the claimed subject matter. The request processor
component 220 includes components for data access, read
component 310 and write component 320, and memory
requests, allocation component 330 and deallocation compo-
nent 340.

When data is read from or written to memory or a portion
thereof, the SMMC can be utilized. The read component 310
and write component 320 can correspond to getter and setter
functionality associated with a variety of types (as well as
arbitrary sized aggregates). Furthermore, the read component
310 can include functionality to retrieve more data than
requested to obscure the identity of the data requested. Simi-
larly, the write component can write more than identified by a
program at substantially the same time and/or retrieve more
data than necessary to obfuscate a write operation. For
instance, a plurality of memory storage units can be acquired
even though only one unit is necessary for a write operation.
Furthermore, the write operation can even rewrite data in
particular units to further add confusion to a data flow.

The allocation component 330 and deallocation compo-
nent 340 are a substitute of such conventional program com-
mands such as “malloc,” “calloc,” “realloc,” and “free,”
among others. Each component can be implemented in vari-
ous ways and in different contexts. By way of example and
not limitation, consider a situation where the SMMC 130
operates with a paging system. For requests larger than a page
size, the smallest number of pages capable of serving a
request are reserved. For requests smaller than the size of a
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page, a buddy memory allocation mechanism can be used:
start from a block the size of a page and split it in two until the
size of the smallest power of two larger than the request is
obtained. Free blocks of different sizes (e.g., one list for every
power of two up to the page size) can also be kept track of to
serve a memory request when previously allocated memory is
no longer used.

Pointers returned to a program do not need to correspond
directly to the actual location of memory. However, if it is
desired that pointer arithmetic be performed independently,
care should be taken so that the memory area accessible to the
returned pointer does not fall within the memory range acces-
sible through previously returned pointers. To understand
why this is important, consider the following example.

Suppose a program can request a memory block of' size “s,”
and a pointer “p” can be returned. Next, the program requests
an additional block of memory. A pointer within the range [p,
p+s] cannot be returned as subsequent data accesses into this
area could have been computed from the first pointer and
there would be no way to discriminate them. This can be
achieved by having a simple relation between the regular
allocation mechanism done behind the scenes and the point-
ers returned to the program. This relation is not one to one, as
a quick and easy way to derive the offset and page address in
the program’s data space is desired. To this end, the pages in
the program’s address space can be page size aligned.

Furthermore, for performance requirements, it may be best
to make sure that the pointers in the program’s data space are
isomorphic with respect to addition, subtraction, and com-
parison, amongst others. This way the program can still per-
form pointer arithmetic directly on the pointers. However,
maintaining this isomorphism can reveal additional informa-
tion. For example, if two integers are allocated on the same
page, this will be detectable. To alleviate this issue, pointers
can be optionally scrambled and returned to the program.

FIG. 4 is illustrates a representative request process com-
ponent 220 that processes pointers. In accordance with an
aspect of the claimed subject matter, pointers can be
scrambled to avoid revealing location information, and blur
relations between different pointers returned to a program,
among other things. In this instance, pointer arithmetic can be
directed through the SMMC 130 and more specifically
request process component 220 rather than performed inde-
pendently since scrambled pointers can lack the isomorphic
property to support arithmetic operations. Accordingly, the
request process component 220 can include a pointer arith-
metic component 410 that can perform operations such as
addition, subtraction, and comparison with the help of pointer
scrambler/unscramble component 420 and its sub compo-
nents scrambler component 422 and unscramble component
424. Where the pointer arithmetic component 410 receives
multiple pointers on which to perform operations, the
unscramble component 424 can be utilized to normalize or
remove the scrambling associated with each pointer prior to
operation execution. Subsequently, operands and/or results
can be scrambled via scramble component 422 prior to return
to a program.

Referring to FIG. 5, a program transformation system 500
is depicted in accordance with an aspect of the claimed sub-
ject matter. The system 500 includes an analysis component
510 that analyzes an input program. In particular, the analysis
component can identify portions that access memory, for
example reads, writes, allocations, and/or deallocations,
among others. Transform component 520 can transform or
otherwise map such accesses or operations to a secure
memory management component 130 (FIG. 1). For instance,
a read operation can be transformed to a SMMC getter
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instruction and a write operation can be mapped to a setter
instruction. Additionally, the portions of the program can be
modified to facilitate use of the SMMC 130 as will be
described further infra.

Still further yet, the transformations can be governed by
options, parameters, profiles or the like provided thereto, or
retrieved or generated thereby. By way of example and not
limitation, pointer scrambling can be turned on or off. Where
pointer scrambling is turned on, the transform component 520
alone or in conjunction with the analysis component 510 can
map pointers and pointer arithmetic through the SMMC 130.
In another example, parameters can be specified concerning
the extent and or degree of reordering to be performed which
can be respected by the transformation system 500. In yet
another instance, profile information or the like can be pro-
vided to the transformation system or generated by the analy-
sis component 510 pertaining to how to limit application
techniques to specific portions of a program to optimize per-
formance.

In accordance with one aspect, the system 500 can be
employed statically prior to execution to transform a program
into a data location obfuscated program. For example, the
transformation system 500 can form part of a compiler or
compilation process that compiles programs into binaries or
the like. However, the system 500 can also support dynamic
transformation or a combination of static and dynamic trans-
formation. In such a case, memory requests and/or accesses,
for example, can be captured and redirected in at runtime.
Similarly, transformation can depend on runtime context
information such as processor load and potential for security
threat, among other things.

Referring back to system 100 of FIG. 1 briefly, it is to be
appreciated that the obfuscation can occur with respect to a
program and any unit or granularity of data. In fact, code can
even be treated as data and subject to reordering and mapping
to needed code segments, inter alia. The SMMC 130 could
then make requested code available for execution by one or
more processors.

One unit of data that is often used by applications or pro-
grams is a heap. Accordingly, what follows is a more detailed
description of the system 100 in the context of a heap and page
based memory management. Furthermore, various aspects of
the claims will be described in further detail with respect to
this particular embodiment. Of course, this is not intended to
limit the scope of the claims in any way, but rather to facilitate
clarity and understanding of claimed aspects.

FIG. 6 is a data location obfuscation system 600 utilized in
the context of a heap in accordance with an aspect of the
claims. Similar to system 100 of FIG. 1, the system 600
includes the program component 110 and secure memory
management component 130. Here, however, the memory
120 corresponds to a specific type of memory namely heap
memory or simply a heap, which is a pool or segment of main
memory designated for program use that exists for the dura-
tion of program execution. For instance, a heap is often uti-
lized to hold information about reference types such as
classes, interfaces, delegates, objects, strings, etc. Further-
more, the heap 120 can comprise a plurality of units of storage
122 such as pages. The heap 120 differs from other types of
memory including but not limited to stack memory as will be
discussed further infra.

The SMMC 130 mediates all accesses to the heap 120,
making reordering as transparent as possible to the program
component 110. As accessing the heap is a common opera-
tion, overhead should not be too large. Therefore, a mecha-
nism derived from paging can be employed to keep track of
the current location of data.

Theheap 120 can be divided into pages 122 of a certain size
“s” (e.g., s=4 KiB) and the location of each allocated page can
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be tracked through a mapping. For every access to the heap
120, “n+1” pages can be randomly permuted with probability
“1/p,” where “n” and “p” are security parameters that can be
tweaked to enable a trade-off between performance and secu-
rity. Additionally, pages can be encrypted. To make it harder
to detect the permutation through binary similarities, for
instance, salting can be employed. This means that before
every encryption the pages are padded with a different value,
which will result in different encrypted pages, even for iden-
tical content (because of the unique salt).

As a consequence of such a reordering mechanism, corre-
spondence between pointers in a program’s data space and
the actual location of data in memory varies over time. The
correct mapping can be considered known solely by the
SMMC 130. As with traditional paging mechanisms, tables to
map pointers to actual locations of pages can be stored in
pages as well. With 4 KiB pages, for example, two levels of
indirection would suffice to retrieve the requested page.

Software-based protection in the malicious-host model
suffers from the absence of a nucleus of trust. In order to make
claims about security of the applied technique, it is assumed
that the SMMC 130 can be trusted. This is an engineering
assumption. However, if the trusted component can be made
small enough, the problem of protecting a generic program is
reduced to the problem of protecting a very specific smaller
piece of code. The SMMC 130 can then in practice be pro-
tected by existing techniques from the domain of obfuscation
and individualization, for instance. The security claims that
follow assume that the SMMC 130 can perform encryption
and decryption, has access to a pseudo-random number gen-
erator, and has memory required to swap two pages.

Each time a data item on a given page is read or written by
a program, “n” additional pages are pulled into the SMMC
130 with probability “1/p.” The requested operations are per-
formed; the pages are salted differently, re-encrypted, and put
back into memory in a random permutation. This is the root of
confusion for an attacker.

With every step, different candidate locations exist for the
location of a particular piece of data. If it is assumed that the
accesses to the heap 120 are random, then the following
construction may be used to get the average number of pos-
sible candidates assuming that “p=1."

Assume that there are “N” pages in total. The problem can
be tackled as follows: When a page is accessed, it will be
pulled into the SMMC 130, along with “n” additional pages.
After the first time step “t,” “n” pages are written back to
memory in a random permutation over the “n+1” pages, while
one page is retained in the SMMC 130. After the first time
step, there are “n+1” candidate locations for the page that was
actually requested. This can be denoted “C(t,)=n+1,” or the
confusion at time step “t,” is “n+1.”

These pages can be marked as “red.” In the next step, “n”
random pages are taken from “N-1" pages not yet in the
SMMC 130. Every taken page that was not yet marked “red”
now becomes “red.”

To access the additional number of pages marked at each
time step, a sequence of draws from a finite population with-
out replacement is defined by a hypergeometric distribution.
As such, the average number of marked pages in a sequence
of “n” draws from the “N-1" candidates of which “C(t,)-1”
are marked at time step “t,,,” is given by “n(C(t,)-1)/(N-1).”
As a result, the following equation for confusion can be
obtained:

C(t)=14n

C(t3,.)=Cli;4n-n(C(z;)-1)/(N-1)
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One can easily verify that this converges to “N,” since no
more candidates are added once “C(t,)” equals “N.” Thus, for
“n=N-1" and “p=1,” true oblivious RAMs can be obtained
under the specified assumptions.

The SMMC 130 can mediate every access to the heap 120.
It can take care of the allocation and release of dynamic
memory as well. Therefore, all calls to memory management
functions (e.g. malloc, calloc, realloc, free . . . ) are redirected.
One dynamic memory allocation mechanism can use buddy
blocks for allocations smaller or equal to page size “s.” When
no previously allocated memory is available for reuse,
memory can be allocated per page. If the block is more than
twice as large as desired, it can be broken in two. One of the
halves can be selected, and the process repeats until the block
is the smallest power of two larger than or equal to the request.

A list of free blocks of different sizes can be maintained.
When blocks are freed, the buddy of that block can be
checked; if it is free as well, they can be merged once again.
In the presence of free blocks, a request for memory can be
started from the smallest free block that can serve the request.
For blocks larger than the page size “s,” the smallest number
of pages sufficient to serve the request can be allocated.

Pointers returned to a program do not need to correspond
directly to the actual location of data. However, if it is desir-
ous to allow the program to perform pointer arithmetic inde-
pendently, care should be taken that the returned pointers can
be the result of a regular allocation mechanism. This means
that memory requests should not return pointers that fall
within previously allocated memory areas in the programs
data space. Otherwise, during a subsequent memory access,
one would be unable to determine whether the pointer was
computed through an offset from an earlier location or origi-
nated with the request.

This can be resolved by maintaining a straightforward
relation between pointers returned by regular memory
requests performed by the SMMC 130 behind the scenes and
pointers returned by the program component 110. This rela-
tion need not be one-to-one to facilitate future memory
accesses.

As pointers seen by the program component 110 do not
correspond to the location of data in memory, read and write
operations to the heap should be intercepted. These memory
accesses may be anywhere in the memory area allocated by
the program component 110, and there should be an easy way
to translate the addresses to the correct location of data at the
time the request is made. Therefore, it is desired that the
pointers returned to the program from a memory request are
page sized aligned. On subsequent accesses, the offset on the
page can be easily determined, and a mapping will translate
the page address as seen by the program to the actual current
location on the page.

When speaking in terms of the heap 120, this implies the
techniques discussed only affects data on the heap. In many
scenarios, local variables of a program can contain critical
information or their integrity can be crucial for uncompro-
mised execution of a program. Hence, local variables from a
stack or stack memory can optionally be migrated from the
stack to the heap by transformation system 500 of FIG. 5.

Inpractice, definitions of local variables can be replaced by
pointer creations through memory requests, for example dur-
ing a program transformation process. In other words,
required memory is allocated when a variable is declared.
Subsequent uses of the local variable can then be adapted to
go through the pointer to the memory location. If the variable
goes out of scope, the memory can be freed.

As previously mentioned, it may be desirable to blur the
relation between different pointers returned to a program by
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scrambling the pointers. If left unscrambled, the relation
between different pointers can reveal, for example, that dif-
ferent smaller memory areas have been allocated on the same
page, or that two independently computed pointers are
related.

Transforming page addresses to page-size aligned
addresses to facilitate subsequent data accesses has an iso-
morphic property, as previously described. However, this
restriction makes it hard to hide the relation between different
pointers as well. On the other hand, if the pointers are
scrambled more thoroughly, the program can no longer oper-
ate on pointers directly. As a result, if extensive pointer scram-
bling is turned on, pointer arithmetic can be redirected to the
SMMC 130 as well.

As with any form of obfuscation, interfacing with external
code poses a challenge. The problem is that the external code
may not be under program or developer control and therefore
cannot be modified to take data obfuscation into account.
Consequently, data needs to be put into its original format
before it is passed to external code. This poses a potential
security risk, as it forces the code to contain functionality to
undo transformations. Thus, reliance on external code should
be reduced to a minimum. For example, library functions
should be internalized and included in the transformation as
much as possible. Ideally, the only time data is normalized is
just prior to input/output, as this cannot be avoided when
preserving relevant behavior of a program.

Here, as the pointers in the program’s data space no longer
point to the actual data, a problem arises when pointers are
passed to code that is beyond control. This problem occurs
when pointers escape to library functions or system calls.

Other than internalizing external code, there are at least
two strategies that can be employed by the transformation
system 500 of FIG. 5, for example, to deal with this situation.
The first is to normalize the data. This would mean that all
memory accessible through the escaping pointers be reor-
dered so that the memory is in the correct layout and to pass
the correct pointer to this memory area. This may require
extensive normalization of memory via recursive processes,
since external code may receive aggregate arguments that in
turn contain pointers to various memory locations from which
other memory locations may become accessible. The second
approach is to redirect calls to those library functions to
internal code that will emulate the library functions in such a
way that they take the shuffled layout into account.

The first approach is more general and requires less domain
specific knowledge. However, it increases the attack surface
of the SMMC 130, as it should now contain functionality to
turn the memory blocks back into a normal layout. This
should probably be avoided. In yet another alternative, data
that may escape to library functions or system calls can be
excluded from transformation in accordance with the subject
disclosure. This makes sense since as this data may be
revealed anyway when crossing the boundary. On the other
hand, it is not easy to determine conservatively and accurately
the data that could potentially escape during execution of a
program.

A related problem is pointers coming in from external code
such as library functions. These may pose a problem because
it may be hard to distinguish them from scrambled pointers.
Again, there are at least two possible solutions that can be
implemented by the transformation system 500. The first is to
take an all or nothing approach. In this solution, as soon as
new pointers are created (e.g. by library calls, dereferen-
ces . . . ), they can be absorbed into the scheme by notifying
the SMMC 130 of the creation and using a modified pointer
subsequently. This way it is ensured that the pointers have
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been masked (if masking is turned on), and that they go
through the translation mechanism for each memory opera-
tion.

Once again, this may create problems if pointers to pointers
or structs containing pointers are passed to the program.
However, most pointers created by external functions are the
result of memory allocation, which is intercepted anyway.
One notable exception is command-line arguments, which
are passed as an array of strings (e.g., char pointers). As the
number of arguments is known and the structure of the array
is well known, these pointers can be absorbed as well.

The second approach is to mark the pointers under the
control of the SMMC 130. This can be done by relying on the
fact that a target operating system a portion of virtual address
space can be reserved for the kernel. This means that the
program should not see pointers for which the highest bit is
set. Marking thus includes setting this highest bit, which will
identify pointers that are part of the data location obfuscation
scheme. Furthermore, this marking does not break pointer
arithmetic, which means that such arithmetic can still be done
directly by the program if extensive pointer scrambling is not
activated.

The aforementioned systems, architectures, and the like
have been described with respect to interaction between sev-
eral components. It should be appreciated that such systems
and components can include those components or sub-com-
ponents specified therein, some of the specified components
or sub-components, and/or additional components. Sub-com-
ponents could also be implemented as components commu-
nicatively coupled to other components rather than included
within parent components. Further yet, one or more compo-
nents and/or sub-components may be combined into a single
component to provide aggregate functionality. Communica-
tion between systems, components and/or sub-components
can be accomplished in accordance with either a push and/or
pull model. The components may also interact with one or
more other components not specifically described herein for
the sake of brevity, but known by those of skill in the art.

Furthermore, as will be appreciated, various portions of the
disclosed systems above and methods below can include or
consist of artificial intelligence, machine learning, or knowl-
edge or rule based components, sub-components, processes,
means, methodologies, or mechanisms (e.g., support vector
machines, neural networks, expert systems, Bayesian belief
networks, fuzzy logic, data fusion engines, classifiers . . . ).
Such components, inter alia, can automate certain mecha-
nisms or processes performed thereby to make portions of the
systems and methods more adaptive as well as efficient and
intelligent. By way of example and not limitation balance
between security and performance can be inferred as a func-
tion of contextual information by the secure memory man-
agement component 130 and utilized to govern its actions.

In view of the exemplary systems described supra, meth-
odologies that may be implemented in accordance with the
disclosed subject matter will be better appreciated with ref-
erence to the flow charts of FIGS. 7-12. While for purposes of
simplicity of explanation, the methodologies are shown and
described as a series of blocks, it is to be understood and
appreciated that the claimed subject matter is not limited by
the order of the blocks, as some blocks may occur in different
orders and/or concurrently with other blocks from what is
depicted and described herein. Moreover, not all illustrated
blocks may be required to implement the methodologies
described hereinafter.

Referring to FIG. 7, a method 700 of securing a program is
illustrated in accordance with an aspect of the claimed subject
matter. At reference numeral 710, memory requests and/or
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accesses from a program are identified including but not
limited to read, write, allocate, and/or deallocate operations.
At numeral 720, the identified memory requests and/or
accesses are redirected from the program to memory via one
ormore layers of indirection. In accordance with one embodi-
ment, data locations can be changed periodically unbe-
knownst to the program. Accordingly, program specified data
locations or addresses can be mapped or translated to actual
addresses utilizing a secure memory management unit for
example. In this manner, the data flow or access pattern can
appear to an outside observer to be random.

FIG. 8 depicts a method of secure program processing
according to an aspect of the claimed subject matter. At ref-
erence numeral 810, the number of memory accesses,
requests, or the like are tracked. For example, each memory
read operation can correspond to memory an access as would
each write. At numeral 820, a determination is made as to
whether the number of accesses exceeds or is greater than a
threshold value. If the threshold has not been exceeded
(“NO”), the method loops back to numeral 810 to continue
tracking accesses. Ifthe threshold is exceeded at numeral 820
(“YES”), the method proceeds to reference 830 where a num-
ber of memory units are permuted and a map is updated to
reflect changes made. In this manner, the threshold value
represents a parameter for controlling how often permutation
is performed. At reference numeral 840, permuted data can
also be subject to altered encryption as well prior to returning
to reference numeral 810. For example, an encryption algo-
rithm can employ a different salt to change the encryption
applied to groups of data/units of memory (e.g., page) and/or
the particular data itself.

FIG. 9 is a flow chart diagram of a method of obfuscating
data location 900 in accordance with an aspect of the claimed
subject matter. At reference numeral 910, one or more point-
ers are identified. Atreference 920, a determination is made as
to whether or not the pointers should be scrambled. For per-
formance requirements, it may be best to make sure that the
pointers in a program’s data space are isomorphic with
respect to addition, subtraction, comparison, or the like. This
way a program can perform pointer arithmetic directly on the
pointers. However, maintaining such isomorphism can reveal
additional information. For example, if two integers are allo-
cated on the same page, this will be detectable. To address this
issue, pointers returned to a program can optionally be
scrambled. The determination at 920 can involve checking a
supplied option or parameter specifying whether scrambling
is on or off, according to one embodiment. If scrambling is
determined to be undesirable at numeral 920 (“NO”), the
method simply terminates. Alternatively, if scrambling is
desired (“YES”), the method continues at numeral 930 where
the pointers are scrambled. Various methods, techniques,
algorithms or the like can be utilized to perform such scram-
bling. As a simple non-limiting example, pointers can be
scrambled with an exclusive-or (xor) provided with a con-
stant.

FIG. 10 is a flow chart diagram of a method 1000 of
processing pointers in accordance with an aspect of the
claimed subject matter. As previously mentioned with respect
atleast to FIG. 9, pointers can be scrambled to prevent reveal-
ing location information. However, this prevents a program
from independently performing pointer arithmetic. Accord-
ingly, method 1000 represents functionality performed by a
separate component such as a secured memory management
component. At reference numeral 1010, one or more pointers
are received, retrieved, or otherwise acquired. At numeral
1020, the pointers are unscrambled and finally at reference
1030, the pointer arithmetic is performed. For example, con-
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stants can be added or subtracted from pointers, one pointer
can be subtracted from another, and/or pointers can be com-
pared.

FIG. 11 illustrates a method of program transformation
1100 in accordance with an aspect of the claimed subject
matter. At reference numeral 1110, all memory accesses,
requests and the like are redirected to a secure memory man-
agement component to enable location obfuscation. At
numeral 1120, local variables are migrated. For example,
where memory corresponds to a program heap, local vari-
ables can be migrated to the heap to enable such data to be
processed by the secure memory management component. At
numeral 1130, pointer arithmetic operations are redirected
through the SMMC where scrambling is enabled.

At reference 1140, escaping pointers are addressed. This
can be accomplished in a variety of different ways. For
instance, functionality can be inserted for undoing transfor-
mations or normalizing data. Alternatively, code that emu-
lates external functionality can be injected and escaping calls
redirected to the injected code such that the shuffled layout is
taken into account. Yet another way to address escaping point-
ers is to opt not to include data that may escape in the obfus-
cation scheme.

At reference numeral 1150, incoming pointers can be
addressed. Similar to escaping pointers, incoming pointers
pose a relate problem with multiple potential solutions. In
particular, it can be hard to distinguish incoming pointers
from scrambled pointers. One way to address this issue is to
inject functionality to absorb incoming pointers into the
scheme by scrambling the incoming pointers upon receipt.
Alternatively, functionality can be provided to denote that
scrambled pointers under control of the SMMC.

Turning attention to FIG. 12, a flow chart diagram is pro-
vided of a method of performance optimization 1200 in
accordance with an aspect of the claimed subject matter. At
reference numeral 1210, a runtime profile is generated for a
program. At numeral, 1220, the most beneficial uses of data
access pattern hiding are identified from the profile. In this
manner, data access pattern hiding techniques can be applied
selectively to improve performance. For example, applica-
tions such as digital rights management (DRM) and access
control involve Boolean checks executed outside perfor-
mance-sensitive program paths. Such security tests may be
required just once, a few times, or infrequently during runt-
ime. These operations often can be made orders of magnitude
slower without perceptively affecting user experience.
Accordingly, these portions of an application can be deter-
mined to benefit the most. Furthermore, when better opti-
mized, data access hiding techniques can be use in more
performance-oriented applications such as stream decryption
with sensitive keys, amongst others. At reference numeral
1230, unrelated portions of the application are determined for
application of hiding techniques. To avoid attracting attention
to security-critical code that is subject to data access hiding
technology, various other unrelated parts of an application
can be protected as well.

The aforementioned systems, methods, techniques and the
like can be employed for both obfuscation and tamper resis-
tance. Most existing techniques from the domain of tamper-
resistance focus on protecting the integrity of code and are
based on check summing segments of the code. Related tech-
niques hash the execution of a piece of code while others have
looked at the reaction mechanism in more detail. Once tam-
pering is detected, appropriate action is taken. [f the manifes-
tation of this action is too obvious, it can be easily tracked
down. Delayed and controlled failures are a way to make it
harder to locate the reaction mechanism.
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Software obfuscation aims to make programs harder to
understand. There is a considerable body of work on code
obfuscation that focuses on making itharder for an attacker to
decompile a program and extract high-level semantic infor-
mation. The above-described techniques are complementary
to existing work and focus on making it harder to detect
dynamic data flow.

White-box cryptography can be seen as a specific clearly
defined problem in obfuscation. Here, the goal is to hide a
secret key in a cryptographic software implementation in the
malicious host model. Aspects of the claimed subject matter
can help to defend against certain attacks based on analyzing
dataflow, but should be viewed as one component of a com-
prehensive software-protection toolbox.

One particular example described above to facilitate clarity
and understanding concerned utilizing a heap in conjunction
with a paging mechanism. It is to be appreciated that various
other embodiments are also possible and contemplated. For
instance, data can be kept in a self-balancing binary search
tree. This way data can be retrieved by looking for it in a
binary tree. As the tree is self-balancing, the data reordering
would be automatic. A splay-tree implementation is also pos-
sible to further exploit data locality, as recently accessed
items will be near the top of the tree.

The word “exemplary” or various forms thereof are used
herein to mean serving as an example, instance, or illustra-
tion. Any aspect or design described herein as “exemplary” is
not necessarily to be construed as preferred or advantageous
over other aspects or designs. Furthermore, examples are
provided solely for purposes of clarity and understanding and
are not meant to limit or restrict the claimed subject matter or
relevant portions of this disclosure in any manner. It is to be
appreciated that a myriad of additional or alternate examples
of varying scope could have been presented, but have been
omitted for purposes of brevity.

As used herein, the term “inference” or “infer” refers gen-
erally to the process of reasoning about or inferring states of
the system, environment, and/or user from a set of observa-
tions as captured via events and/or data. Inference can be
employed to identify a specific context or action, or can
generate a probability distribution over states, for example.
The inference can be probabilistic—that is, the computation
of a probability distribution over states of interest based on a
consideration of data and events. Inference can also refer to
techniques employed for composing higher-level events from
a set of events and/or data. Such inference results in the
construction of new events or actions from a set of observed
events and/or stored event data, whether or not the events are
correlated in close temporal proximity, and whether the
events and data come from one or several event and data
sources. Various classification schemes and/or systems (e.g.,
support vector machines, neural networks, expert systems,
Bayesian belief networks, fuzzy logic, data fusion en-
gines . . . ) can be employed in connection with performing
automatic and/or inferred action in connection with the sub-
ject innovation.

Furthermore, all or portions of the subject innovation may
be implemented as a method, apparatus or article of manu-
facture using standard programming and/or engineering tech-
niques to produce software, firmware, hardware, or any com-
bination thereof to control a computer to implement the
disclosed innovation. The term “article of manufacture” as
used herein is intended to encompass a computer program
accessible from any computer-readable device or media. For
example, computer readable media can include but are not
limited to magnetic storage devices (e.g., hard disk, floppy
disk, magnetic strips . . . ), optical disks (e.g., compact disk
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(CD), digital versatile disk (DVD). . .), smart cards, and flash
memory devices (e.g., card, stick, key drive. . .). Additionally
it should be appreciated that a carrier wave can be employed
to carry computer-readable electronic data such as those used
in transmitting and receiving electronic mail or in accessing a
network such as the Internet or a local area network (LAN).
Of course, those skilled in the art will recognize many modi-
fications may be made to this configuration without departing
from the scope or spirit of the claimed subject matter.

In order to provide a context for the various aspects of the
disclosed subject matter, FIGS. 13 and 14 as well as the
following discussion are intended to provide a brief, general
description of a suitable environment in which the various
aspects of the disclosed subject matter may be implemented.
While the subject matter has been described above in the
general context of computer-executable instructions of a pro-
gram that runs on one or more computers, those skilled in the
art will recognize that the subject innovation also may be
implemented in combination with other program modules.
Generally, program modules include routines, programs,
components, data structures, etc. that perform particular tasks
and/or implement particular abstract data types. Moreover,
those skilled in the art will appreciate that the systems/meth-
ods may be practiced with other computer system configura-
tions, including single-processor, multiprocessor or multi-
core processor computer systems, mini-computing devices,
mainframe computers, as well as personal computers, hand-
held computing devices (e.g., personal digital assistant
(PDA), phone, watch . . . ), microprocessor-based or program-
mable consumer or industrial electronics, and the like. The
illustrated aspects may also be practiced in distributed com-
puting environments where tasks are performed by remote
processing devices that are linked through a communications
network. However, some, if not all aspects of the claimed
subject matter can be practiced on stand-alone computers. In
a distributed computing environment, program modules may
be located in both local and remote memory storage devices.

With reference to FIG. 13, an exemplary environment 1310
for implementing various aspects disclosed herein includes a
computer 1312 (e.g., desktop, laptop, server, hand held, pro-
grammable consumer or industrial electronics . . . ). The
computer 1312 includes a processing unit 1314, a system
memory 1316, and a system bus 1318. The system bus 1318
couples system components including, but not limited to, the
system memory 1316 to the processing unit 1314. The pro-
cessing unit 1314 can be any of various available micropro-
cessors. It is to be appreciated that dual microprocessors,
multi-core and other multiprocessor architectures can be
employed as the processing unit 1314.

The system memory 1316 includes volatile and nonvolatile
memory. The basic input/output system (BIOS), containing
the basic routines to transfer information between elements
within the computer 1312, such as during start-up, is stored in
nonvolatile memory. By way of illustration, and not limita-
tion, nonvolatile memory can include read only memory
(ROM). Volatile memory includes random access memory
(RAM), which can act as external cache memory to facilitate
processing.

Computer 1312 also includes removable/non-removable,
volatile/nonvolatile computer storage media. FIG. 13 illus-
trates, for example, mass storage 1324. Mass storage 1324
includes, but is not limited to, devices like a magnetic or
optical disk drive, floppy disk drive, flash memory, or
memory stick. In addition, mass storage 1324 can include
storage media separately or in combination with other storage
media.
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FIG. 13 provides software application(s) 1328 that act as
an intermediary between users and/or other computers and
the basic computer resources described in suitable operating
environment 1310. Such software application(s) 1328
include one or both of system and application software. Sys-
tem software can include an operating system, which can be
stored on mass storage 1324, that acts to control and allocate
resources of the computer system 1312. Application software
takes advantage of the management of resources by system
software through program modules and data stored on either
or both of system memory 1316 and mass storage 1324.

The computer 1312 also includes one or more interface
components 1326 that are communicatively coupled to the
bus 1318 and facilitate interaction with the computer 1312.
By way of example, the interface component 1326 can be a
port (e.g., serial, parallel, PCMCIA, USB, FireWire. ..) oran
interface card (e.g., sound, video, network . . . ) or the like. The
interface component 1326 can receive input and provide out-
put (wired or wirelessly). For instance, input can be received
from devices including but not limited to, a pointing device
such as a mouse, trackball, stylus, touch pad, keyboard,
microphone, joystick, game pad, satellite dish, scanner, cam-
era, other computer, and the like. Output can also be supplied
by the computer 1312 to output device(s) via interface com-
ponent 1326. Output devices can include displays (e.g. CRT,
LCD, plasma . . . ), speakers, printers, and other computers,
among other things.

FIG. 14 is a schematic block diagram of a sample-comput-
ing environment 1400 with which the subject innovation can
interact. The system 1400 includes one or more client(s)
1410. The client(s) 1410 can be hardware and/or software
(e.g., threads, processes, computing devices). The system
1400 also includes one or more server(s) 1430. Thus, system
1400 can correspond to a two-tier client server model or a
multi-tier model (e.g., client, middle tier server, data server),
amongst other models. The server(s) 1430 can also be hard-
ware and/or software (e.g., threads, processes, computing
devices). The servers 1430 can house threads to perform
transformations by employing the aspects of the subject inno-
vation, for example. One possible communication between a
client 1410 and a server 1430 may be in the form of a data
packet transmitted between two or more computer processes.

The system 1400 includes a communication framework
1450 that can be employed to facilitate communications
between the client(s) 1410 and the server(s) 1430. The cli-
ent(s) 1410 are operatively connected to one or more client
data store(s) 1460 that can be employed to store information
local to the client(s) 1410. Similarly, the server(s) 1430 are
operatively connected to one or more server data store(s)
1440 that can be employed to store information local to the
servers 1430.

Client/server interactions can be utilized with respect with
respect to various aspects of the claimed subject matter. By
way of example and not limitation, a program can be sent
from a client 1410 to a server 1430 for execution by the server
1430 in a private way such that the server 1430 does not learn
much about the program, but rather just computer results and
returns them to a client requester. Data access pattern hiding
techniques can be employed in this type of client/server envi-
ronment to where computation is outsourced. Such tech-
niques can enable hiding access patterns from not just the
server 1430 but also any eavesdroppers on the communica-
tion framework 1450. Once specific exemplary application
can include next generation web applications where much
computation is down on a client 1410 and the server stores
data and does some of the computation. In this case, it might
be desirous to what data is being accessed and when it is being
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accessed. Furthermore, it is to be noted that at least portions of
the techniques described above can be embodied as a web or
network service. By way of non-limiting example, program
transformation can be embodied as a web service.

What has been described above includes examples of
aspects of the claimed subject matter. It is, of course, not
possible to describe every conceivable combination of com-
ponents or methodologies for purposes of describing the
claimed subject matter, but one of ordinary skill in the art may
recognize that many further combinations and permutations
of'the disclosed subject matter are possible. Accordingly, the
disclosed subject matter is intended to embrace all such alter-
ations, modifications, and variations that fall within the spirit
and scope of the appended claims. Furthermore, to the extent
that the terms “includes,” “contains,” “has,” “having” or
variations in form thereof are used in either the detailed
description or the claims, such terms are intended to be inclu-
sive in a manner similar to the term “comprising” as “com-
prising” is interpreted when employed as a transitional word
in a claim.

What is claimed is:

1. A data location obfuscation system, comprising:

a processor;

a memory accessible to the processor;

a computer program component stored on the memory and

executable via the processor; and

a memory management component stored on the memory

and executable via the processor that reorders, during
execution of the computer program component, data
locations of the computer program component to defend
against discernment of data flow patterns, wherein the
memory management component is configured to deter-
mine that scrambling is turned on and, based at least in
part on the determination, scramble pointers returned by
the memory management component to the program to
blur relations between pointers.

2. The system of claim 1, further comprising a heap
memory, wherein the computer program component is stored
on the heap memory.

3. The system of claim 2, further comprising a transforma-
tion component stored on the memory and executable via the
processor that migrates stack-based local variables of the
computer program component to the heap memory to enable
protection thereof.

4. The system of claim 1, wherein the memory manage-
ment component comprises a pointer unscrambler compo-
nent stored on the memory and executable via the processor
that unscrambles pointers to facilitate arithmetic operations
amongst pointers.

5. The system of claim 1, wherein the memory manage-
ment component performs a memory access operation by
retrieving a first amount of data from memory, wherein the
first amount of retrieved data is more than a second amount of
data required to satisfy the memory access operation.

6. The system of claim 1, wherein the memory manage-
ment component comprises an encryption/decryption com-
ponent that encrypts or re-encrypts data with different salts.

7. The system of claim 1, wherein the memory manage-
ment component performs unrequested memory access
operations to obscure an identification of data of the computer
program component.

8. The system of claim 1, wherein the memory manage-
ment component is configured to provide levels of obfusca-
tion based at least in part on at least one of user input or
program profile information.
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9. The system of claim 1, wherein the memory manage-
ment component performs a memory access operation for a
first page of data by:

retrieving the first page of data and a number of additional

pages of data from the memory;

encrypting each page of data with a different salt; and

storing, in a random permutation, each encrypted page of

data in the memory.
10. A method of data location obfuscation, comprising:
mediating access to a heap memory of a computing device
by a program executing on the computing device;

reordering data of the program on the heap memory during
execution of the program on the computing device while
retaining original program functionality; and

randomly permuting a subset of the heap memory upon

each access, wherein the heap memory is divided into

pages and at least one of the pages is encrypted with a

salt, and wherein the randomly permuting includes:

permuting “n” pages with probability “p”, where “n”
and “p” include modifiable security parameters; and

re-encrypting the at least one of the pages with a differ-
ent salt based at least in part on individual accesses of
the subset of the heap memory.

11. The method of claim 10, further comprising applying
and removing encryption to heap data using salting.

12. The method of claim 10, further comprising scrambling
pointers returned to the program.

13. The method of claim 10, wherein each of the pages is
encrypted with the salt and the randomly permuting further
includes:

retrieving the pages from the subset of the heap memory;

re-encrypting each of the pages with a new salt to generate

re-encrypted pages; and

storing the re-encrypted pages in the subset of the heap

memory.

14. A method of securing computer programs, comprising:

identifying heap memory operations in a computer pro-

gram, the heap memory operations including requests
and accesses;

redirecting the heap memory operations by the computer

program to a secure memory management component;

migrating local variables of the computer program from a

stack memory to the heap memory;

shuftling, by the secure memory management component

and during execution of the computer program, loca-
tions of data of the computer program in a heap memory
while maintaining original program functionality; and
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receiving a reorder-trigger, wherein the shuffling locations
of data of the computer program in a heap memory is
performed responsive to the reorder-trigger, and
wherein shuffling locations of data comprises:
retrieving multiple units of encrypted data from the heap
memory;
decrypting the retrieved multiple units of encrypted data
to produce multiple units of non-encrypted data;
re-encrypting multiple units of non-encrypted data to
produce multiple units of re-encrypted data, wherein
at least two units of re-encrypted data were re-en-
crypted with different salts; and
storing the multiple units of re-encrypted data, in a ran-
dom permutation, in the heap memory.
15. The method of claim 14, further comprising:
replacing definitions of the local variables of the computer
program with pointer creations through memory
requests; and
for each of the redefined local variables, adapting subse-
quent uses of the local variable to go through the corre-
sponding pointer.
16. The method of claim 14, further comprising:
redirecting pointer arithmetic to the secure memory man-
agement component; and
scrambling, by the secure memory management compo-
nent, one or more pointers subject to arithmetic opera-
tions.
17. The method of claim 14, further comprising:
redirecting calls to external library functions to internal
code; and
emulating the external library functions with the internal
code in such a way that takes a shuffled memory layout
into account.
18. The method of claim 14, further comprising:
identifying pointers coming from a library function; and
either scrambling the pointers or distinguishing the incom-
ing pointers from scrambled pointers to facilitate correct
execution of pointer arithmetic.
19. The method of claim 14, further comprising:
providing the reorder-trigger responsive to either one of:
determining that a period of time since a most immediate
prior reordering having occurred is greater than a
threshold time period; or
determining that a number of memory requests/accesses
is greater than a threshold amount.

#* #* #* #* #*



